
EARN: Efficient Inference Acceleration for LLM-based Generative
Recommendation by Register Tokens

Chaoqun Yang
chaoqun@yang.emai.cn
Tsinghua University

Beijing, China

Xinyu Lin∗
xylin1028@gmail.com

National University of Singapore
Singapore, Singapore

Wenjie Wang∗
wenjiewang96@gmail.com

University of Science and Technology
of China

Hefei, China

Yongqi Li
liyongqi0@gmail.com

The Hong Kong Polytechnic
University

Hong Kong, China

Teng Sun
stbestforever@gmail.com
Shandong University

Qingdao, China

Xianjing Han
hanxianjing2018@gmail.com

National University of Singapore
Singapore, Singapore

Tat-Seng Chua
dcscts@nus.edu.sg

National University of Singapore
Singapore, Singapore

Abstract
Large Language Model-based generative recommendation (LLM-
Rec) has achieved notable success, but it suffers from high infer-
ence latency due to massive computational overhead and memory
pressure of KV Cache. Existing KV Cache reduction methods face
critical limitations: cache compression offers marginal acceleration
given recommendation tasks’ short decoding steps, while prompt
compression risks discarding vital interaction history. Through
systematic analysis of attention patterns in LLMRec, we uncover
two pivotal insights: 1) layer-wise attention sparsity inversion where
early layers retain dense informative patterns while later layers
exhibit high redundancy, and 2) dual attention sinks phenomenon
where attention scores concentrate on both head and tail tokens of
input sequences. Motivated by these insights, we propose EARN,
an efficient inference framework that leverages the early layers
to compress information into register tokens placed at the input
sequence boundaries, then focuses solely on these tokens in the
subsequent layers. Extensive experiments on three datasets, two
LLMRec methods and two LLM architectures demonstrate EARN’s
superiority, achieving up to 3.79x speedup and 80.8% KV Cache re-
duction with better accuracy than the general finetuning approach.
Our work bridges the efficiency-effectiveness gap in LLMRec, offer-
ing practical deployment advantages for industrial scenarios.

∗Corresponding authors. This research is supported by the National Research Founda-
tion, Singapore under its National Large Language Models Funding Initiative (AISG
Award No: AISG-NMLP-2024-002). Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore.

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736919

CCS Concepts
• Information systems → Recommender systems.

Keywords
LLM-based Recommendation, Inference Acceleration, KV Cache

ACM Reference Format:
Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han,
and Tat-Seng Chua. 2025. EARN: Efficient Inference Acceleration for LLM-
based Generative Recommendation by Register Tokens. In Proceedings of
the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3711896.3736919

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15553291.

1 Introduction
Recently, Large Language Model (LLM)-based generative recom-
mendation (LLMRec) has shown great potential due to its superior
reasoning capabilities [10, 16, 20–22, 36, 38]. However, it suffers
from high inference latency due to its massive model architecture
and auto-regressive decoding paradigm, which severely limits its
application in practical recommendation scenarios [12, 37, 44]. For
instance, platforms like YouTube, which serve hundreds of millions
of users daily with billions of interactions, require millisecond-level
response times1. This highlights the stark efficiency gap between
current LLMRec implementations and real-world application re-
quirements. Therefore, enhancing the inference efficiency of LLM-
Rec is a crucial issue for industrial applications.

For efficient inference of LLMRec, caching computed Key-Value
state pairs (i.e., KV Cache) is a popular choice. Technically, the
inference pipeline with KV Cache typically consists of two distinct

1https://affmaven.com/youtube-statistics/

3483

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3736919
https://doi.org/10.1145/3711896.3736919
https://doi.org/10.5281/zenodo.15553291
https://doi.org/10.5281/zenodo.15553291
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3736919&domain=pdf&date_stamp=2025-08-03

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, and Tat-Seng Chua

Figure 1: The inference process of LLMRec. In the prefilling
stage, LLM computes the initial KV Cache and generates the
first token of the output; in the decoding stage, LLM updates
the KV Cache and generates subsequent tokens one by one.

stages. As shown in Figure 1, given the input token sequence (user
profile, historical interactions, etc.), the first is the prefilling stage,
where LLM generates the first token of the output and caches com-
puted Key-Value state pairs of all layers for every token. The second
is the decoding stage, where LLM generates subsequent tokens auto-
regressively using pre-computed KV Cache, and updates KV Cache
in each decoding step. As the input sequence length increases, the
computational overhead of KV Cache grows greatly, significantly
prolonging the inference latency. And when the KV Cache size is
large, each decoding step requires accessing a substantial amount
of memory, which can severely slow down the inference. In light
of the above, the key to accelerating the inference of LLMRec lies
in reducing the size of KV Cache.

To address this challenge, some research has been proposed. One
of the representative works is cache compression [27, 44]. It selec-
tively removes less important KV pairs to reduce KV Cache size
during decoding. However, recommendation tasks typically require
few decoding steps to generate short output token sequences, such
as item identifiers (around 1 to 5 tokens), limiting their acceler-
ation potential in decoding. Another method is prompt compres-
sion [17, 44], which reduces initial KV Cache size during prefilling
by condensating the input sequences, for instance, deleting unim-
portant tokens [14] or compressing the token sequence into a few
tokens [18]. This technique not only decreases the computational
load in prefilling but also alleviates the memory pressure in decod-
ing. Although this method has achieved success in NLP [17, 44],
it struggles to balance efficiency and accuracy in the context of
LLMRec. In LLMRec, it is difficult to distinguish between important
and unimportant items, which makes prompt compression method
prone to discard crucial user interaction information, resulting in
severe accuracy losses, or fail to achieve satisfactory acceleration
in an effort to retain information. Hence, there is an urgent need
for a method that enhances inference efficiency while preserving
recommendation effectiveness.

To this end, we identify which information can be safely com-
pressed in LLMRec, by inspecting the attention score distribu-
tions [40] in LLMRec. Along two critical dimensions: layer order

Figure 2: The attention distributions of different layers on
the NLP task (reading comprehension QA) and the LLMRec
task (LC-Rec on Beauty dataset) on Head 0 of Llama model.
In the LLMRec task, the first three layers are relatively dense,
while subsequent layers are sparse, with sinking occurring
on the head and tail tokens.

and token position, we observe two key characteristics of LLM-
Rec across three diverse datasets, two mainstream LLMRec meth-
ods, and two distinct LLM architectures. For example, as shown
in Figure 2, on the Llama model and Beauty dataset, we found the
following (more similar evidence can be found in Appendix A.1):
• Layer-wise attention sparsity inversion. Along the layer or-
der dimension, we observe distinct sparsity between the NLP
task and the LLMRec task. In the NLP task, the attention score
distribution is sparse in the initial layers, but becomes relatively
less sparse in the later layers (Sparsity: 0.06 → 0.03). Conversely,
in the LLMRec task, the initial layers exhibit a relatively denser
attention distribution, while the subsequent layers are highly
sparse (Sparsity: 0.01 → 0.07).

• Dual attention sinks phenomenon. Along the token position
dimension, while both the NLP task and the LLMRec task exhibit
attention sinks [40], which means attention scores are highly
concentrated on specific token positions, their distributions differ
significantly. In the NLP task, sinks primarily emerge at the initial
positions and a broad range of later tokens. In contrast, LLMRec
demonstrates a distinctive dual concentration pattern - strong
attention sinks at both head positions and a narrow tail region.

These findings suggest that in LLMRec: 1) In terms of the layer order,
the early layers contain richer information, while the middle tokens
in the later layers are redundant. In fact, previous studies have
shown that the early layers of LLMs are capable of summarizing
required information and important tokens [32], while the later
layers tend to be increasingly redundant, and pruning of redundant
parts has minimal impact on performance [13]. 2) In terms of the
token position, the head and tail tokens carry the most important
information. As explained in prior studies [7, 40], head tokens can
absorb excess attention. Meanwhile, tail tokens interact with all
previous tokens, which suggests that tail tokens of the prompt may
possess the potential to summarize the preceding user interaction
information.

Inspired by the above observations, we proposeEARN, anEfficient
inference Acceleration method for LLM-based Recommendation
by register tokens (Figure 3), to enhance inference efficiency while
maintaining recommendation effectiveness. Specifically, EARN in-
troduces prefix and suffix register tokens - several learnable virtual
tokens placed at the beginning and end of the input sequence, and

3484

EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD ’25, August 3–7, 2025, Toronto, ON, Canada

leverages the first k layers of LLM to compress the user’s historical
interaction information into register tokens. During inference, we
use only register tokens for computation after k layers, thereby
reducing the computational load and memory footprint of the KV
Cache. We instantiate EARN on two mainstream LLMRec meth-
ods with two distinct LLM architectures, and conduct extensive
experiments on three real-world datasets, validating the superiority
of EARN in terms of both efficiency and accuracy. The code and
datasets are available at https://github.com/transcend-0/EARN.

The contributions of our work are manifold:

• We identify the layer-wise attention sparsity inversion and dual
attention sinks phenomenon in LLMRec, revealing that early
layers as well as both head and tail tokens, retain the most critical
information for LLMRec.

• We propose an efficient and effective method that leverages reg-
ister tokens to compress user historical interactions and prune
redundant computations in later layers, striking a delicate balance
between inference efficiency and recommendation effectiveness.

• We validate the effectiveness of EARN through extensive exper-
iments conducted on three real-world datasets, demonstrating
the superiority of EARN in achieving both high inference speed
and recommendation accuracy.

2 Preliminary
2.1 LLM-based Generative Recommendation
In this work, we primarily discuss the LLM-based generative rec-
ommendation. The main idea of LLM-based generative recommen-
dation is using LLMs as the core recommender model, i.e., taking
the task instruction and a user’s historical interactions as the input
prompt to generate item identifiers, such as typical item IDs. For-
mally, given a user’s historical interactions 𝐻 = (𝑖1, · · · , 𝑖𝑇) in the
chronological order, where 𝑖1 to 𝑖𝑇 represent the items the user has
interacted with in the past, LLM-based generative recommendation
predicts the next item 𝑖𝑇+1 the user is likely to interact with, i.e.,

𝑓 (𝐻) = 𝑃 (𝑖𝑇+1 | 𝑖1, · · · , 𝑖𝑇) , (1)

where 𝑓 is the LLM, 𝑃 is the probability distribution of the items.

2.2 Inference of LLMRec
LLM-based generative recommendation follows an auto-regressive
decoding paradigm to generate item identifiers, which comprises
two distinct computational stages: prefilling and decoding. Each
stage exhibits unique inference characteristics and optimization
requirements.

2.2.1 Prefilling. In this stage, the input prompt (containing the
task instruction and the user’s historical interactions) is tokenized
into the token sequence and fed into the transformer decoder. The
most pivotal component is the multi-head attention module that
exists in each layer of the model. Within each attention head, the
input hidden states 𝑿 ∈ R𝑛×𝑑 (𝑛 denotes the sequence length, and
𝑑 denotes the hidden dimension) undergo linear transformations:

𝑸 = 𝑿𝑾𝑸 , 𝑲 = 𝑿𝑾𝑲 , 𝑽 = 𝑿𝑾𝑽 . (2)

Subsequently, the attention mechanism computes the attention
output as follows:

𝑶 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑸𝑲𝑇

√
𝑑

)
𝑽 . (3)

where 𝑶 ∈ R𝑛×𝑑 is the attention output, 𝑸,𝑲 , 𝑽 ∈ R𝑛×𝑑 corre-
spond to query states, key states, and value states, respectively.
Since the generation of subsequent tokens utilizes key states 𝑲 and
value states 𝑽 of preceding tokens, it is common practice to cache
𝑲 and 𝑽 for subsequent use, i.e., KV Cache. This caching strategy
is crucial for maintaining the efficiency of the inference process.

During the prefilling stage, 𝑸 , 𝑲 and 𝑽 are all matrices, and
matrix-matrix multiplication is compute-bound, meaning that the
inference speed is primarily determined by the number of floating-
point operations (FLOPs). Reducing the computational load can
effectively accelerate the prefilling stage. For instance, shortening
the input token sequence length can help decrease the quadratic
computational complexity 𝑂 (𝑛2𝑑) of the attention mechanism. Be-
sides, a shorter token sequence also reduces the size of KV Cache,
thereby contributing to accelerating the decoding stage.

2.2.2 Decoding. In this stage, subsequent tokens are generated
one by one, with the KV Cache being expanded accordingly. At
each decoding step 𝑡 , the model first computes 𝑸𝑡 ,𝑲𝑡 , 𝑽𝑡 ∈ R1×𝑑 ,
then updates the KV Cache:

𝑲1:𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑲1:𝑡−1,𝑲𝑡), 𝑽1:𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑽1:𝑡−1, 𝑽𝑡) . (4)

Next, the attention output is calculated via 𝑸𝑡𝑲𝑇1:𝑡 .
Unlike the prefilling stage, during the decoding stage, 𝑸 is a vec-

tor, while 𝑲 and 𝑽 are matrices. The vector-matrix multiplication
is memory-bound, meaning that the inference speed is primarily
limited by the efficiency of memory access rather than the compu-
tational capacity. The latency is thus predominantly determined by
the efficiency of memory access to the growing KV Cache rather
than FLOPs. In other words, reducing the size of KV Cache allows
the GPU computing cores to access them more rapidly, which is
the key to accelerating inference in the decoding stage.

3 Method
In order to improve the inference efficiency while ensuring the
recommendation effectiveness, we proposedEARN, which achieves
inference acceleration through register tokens. The overview of
our method is presented in Figure 3.

3.1 Register Tokens
3.1.1 Prefix Register. We introduce the prefix register, i.e., a set
of learnable virtual tokens placed at the beginning of the input
prompt. These tokens are designed to learn task-specific instruc-
tions, effectively signaling to the LLM that the current task is a
recommendation problem. This method is inspired by the head
sinks of the dual attention sinks phenomenon as elaborated in
Section 1. Head sinks suggest that the head tokens can effectively
divert attention away from task-irrelevant tokens in the subsequent
layers. Drawing on the practice of prompt tuning [25, 26], where
learnable virtual tokens are used to represent task instructions,
we replace the BOS token, which the attention always sinks into,

3485

https://github.com/transcend-0/EARN

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, and Tat-Seng Chua

Figure 3: Overview of the proposed EARN. During training,
the prefix register and the suffix register are also trainable.
During inference, after layer 𝒌, EARN removes the prompt
tokens to achieve acceleration.

with the learnable prefix register. This substitution not only ful-
fills the attention-diverting function of the BOS token, but also
serves the role of task indication to tell the model that this is a
recommendation task.

3.1.2 Suffix Register. We introduce the suffix register, i.e., a set
of learnable virtual tokens placed at the end of the input prompt,
designed to summarize historical interactions and extract key in-
formation. This method is inspired by the tail sinks of the dual
attention sinks phenomenon as elaborated in Section 1. The final
tokens in a sequence have visibility over all preceding tokens, en-
dowing them with summarization capabilities. Prior studies have
observed that semantically meaningless tokens can effectively sum-
marize preceding information during LLM inference [2, 30]. The
occurrence of the tail sink phenomenon in the LLMRec task further
corroborates this point. Building on this insight, we place learnable
virtual tokens at the end of the input prompt and leverage the first
𝑘 layers of the LLM to amplify this summarization capability.

3.2 Overall Pipeline
3.2.1 Training. During training, we employ next token predic-
tion to train our model, computing the loss on the target item
identifier, i.e., minimizing the negative log-likelihood loss between
the predicted next-item probabilities and the ground truth items.
Formally, given a chronological sequence of user interactions 𝐻 =

[𝑖1, 𝑖2, ..., 𝑖𝑇+1], we construct the input sequence as:

𝑋 = [𝑅prefix; 𝑃rompt;𝑅suffix] , (5)

𝑌 = [𝑖𝑇+1] , (6)

where 𝑅prefix and 𝑅suffix denote the prefix register and the suffix
register, respectively. 𝑃rompt is the user historical interactions
[𝑖1, 𝑖2, ..., 𝑖𝑇] with the task instruction, and 𝑌 is the target item
identifier 𝑖𝑇+1. The loss function is formulated as,

L = −
|𝑌 |∑︁
𝑗=1

log𝑃 (𝑌𝑗 | 𝑋,𝑌< 𝑗) , (7)

where𝑋 is the input sequence of the sample,𝑌 is the corresponding
item identifier, 𝑌𝑗 is the 𝑗-th token in the item identifier 𝑌 , and 𝑌< 𝑗
denotes the tokens preceding 𝑌𝑗 in the item identifier.

When calculating the loss function, the main difference between
our method and ordinary finetuning is the calculation of attention,
where we exclude prompt tokens after layer 𝑘 , i.e.,
• For layer 𝑙 ≤ 𝑘 : All tokens participate in the attention calculation.
• For layer 𝑙 > 𝑘 : Only register and generated tokens participate
in the attention calculation.

3.2.2 Inference. During inference, for a model with 𝑁 layers, the
generation of each token consists of two processes:
(1) Full Computation Process (First𝑘 Layers): All tokens includ-

ing task instructions, user historical interactions, prefix register
and suffix register participate in the model computation. The
model processes the complete input sequence to establish rich
contextual representations.

(2) Register-Focused Process (Remaining 𝑁 − 𝑘 Layers): After
𝑘 layers, we remove the original prompt tokens (task instruc-
tions and historical interactions), retaining only the register
tokens and newly generated tokens. The attention mechanism
in subsequent layers only operates on this reduced set of tokens:
• In the prefilling stage, the input hidden state of layer 𝑘 is
transformed from 𝑿 = [𝑿prefix;𝑿Prompt;𝑿suffix] to 𝑿 ′ =

[𝑿prefix;𝑿suffix], significantly reducing the computational
load and the initial KV Cache size.

• In the decoding stage, the input hidden state of layer 𝑘 is
transformed from 𝑿 = [𝑿prefix;𝑿Prompt;𝑿suffix;𝑿generated]
to 𝑿 ′ = [𝑿prefix;𝑿suffix;𝑿generated], significantly reducing
KV Cache that needs to be accessed during decoding.

This approachmaintains themodel’s ability to leverage historical
information through the learned register representations while
avoiding redundant computations on lengthy prompt tokens.

3.3 Efficiency Analysis
Due to the removal of prompt tokens in the subsequent layers, we
can significantly reduce both the computational load and memory
footprint. Assume the model has 𝑁 layers, 𝑛ℎ heads, an attention
dimension of𝑑𝑎 , a hidden state dimension of𝑑ℎ , and an intermediate
dimension of 𝑑𝑓 . The length of the input prompt is 𝐿, and the
number of register tokens is 𝑟 ≪ 𝐿. If we remove the prompt
tokens after 𝑘 layers, the efficiency promotion can be analyzed
through three key aspects:
• Computation Complexity: The FLOPs of the vanilla LLM
are 𝑁 𝐹𝐿𝑂𝑃𝑠𝐿𝐿𝑀 𝑙𝑎𝑦𝑒𝑟 = 4𝑁𝐿[𝑛ℎ𝑑𝑎 (2𝑑ℎ + 𝐿) + 𝑑ℎ𝑑𝑓] (see Ap-
pendix A.2 for detailed derivation). In our EARN, it becomes
𝑘 𝐹𝐿𝑂𝑃𝑠𝐿𝐿𝑀 𝑙𝑎𝑦𝑒𝑟 + (𝑁 − 𝑘) 𝐹𝐿𝑂𝑃𝑠𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 . Thus, the at-
tention complexity ratio 𝛾attn becomes:

Γ𝑎𝑡𝑡𝑛 =
𝑘 𝐹𝐿𝑂𝑃𝑠𝐿𝐿𝑀 𝑙𝑎𝑦𝑒𝑟 + (𝑁 − 𝑘) 𝐹𝐿𝑂𝑃𝑠𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟

𝑁 𝐹𝐿𝑂𝑃𝑠𝐿𝐿𝑀 𝑙𝑎𝑦𝑒𝑟

=
𝑘

𝑁
+ (1 − 𝑘

𝑁
)
𝑟 [𝑛ℎ𝑑𝑎 (2𝑑ℎ + 𝑟) + 𝑑ℎ𝑑𝑓]
𝐿[𝑛ℎ𝑑𝑎 (2𝑑ℎ + 𝐿) + 𝑑ℎ𝑑𝑓]

≈ 𝑘

𝑁
.

(8)

• KV Cache Size: The memory size of the KV Cache is𝑀𝐾𝑉𝑁𝐾𝑉 ,
where 𝑀𝐾𝑉 represents the memory size of each KV pair, and
𝑁𝐾𝑉 denotes the total number of KV pairs. The original 𝑁𝐾𝑉
would be 𝑛ℎ𝑁𝐿 , whereas now it becomes 𝑛ℎ (𝑘𝐿 + (𝑁 − 𝑘)𝑟) .

3486

EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Specifically, the KV Cache can be shrunk to 𝑘𝐿+(𝑁−𝑘)𝑟
𝑁𝐿

of its
original size, reduced by (𝑁−𝑘) (𝐿−𝑟)

𝑁𝐿
. That is to say, the KV

cache size reduction ratio 𝛾cache is:

Γ𝑐𝑎𝑐ℎ𝑒 = 1 − 𝑘𝐿 + (𝑁 − 𝑘)𝑟
𝑁𝐿

=
(𝑁 − 𝑘) (𝐿 − 𝑟)

𝑁𝐿

≈ 𝑁 − 𝑘

𝑁
.

(9)

• Theoretical Speedup: Assuming that FLOPS of the device is 𝑣𝑐 ,
and HBM rate is 𝑣𝑚 . The estimated time cost is

𝑇 = 𝑇𝑃 +𝑇𝐷 = 𝑇𝑃 + 𝑛𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑑 , (10)

where

𝑇𝑃 =
𝐹𝐿𝑂𝑃𝑠𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙𝑖𝑛𝑔

𝑣𝑐
, (11)

𝑇𝑑 =𝑚𝑎𝑥 (𝐶𝑎𝑐ℎ𝑒
𝑣𝑚

,
𝐹𝐿𝑂𝑃𝑠𝑎𝑡𝑡𝑛

𝑣𝑐
) + 𝐹𝐿𝑂𝑃𝑠𝐹𝐹𝑁

𝑣𝑐
. (12)

The theoretical speedup is

Ω =
𝑇𝑣𝑎𝑛𝑖𝑙𝑙𝑎

𝑇𝐸𝐴𝑅𝑁
≈ 𝑁

𝑘
. (13)

For typical values (𝑁 = 32, 𝑛ℎ = 32, 𝑑𝑎 = 128, 𝑑ℎ = 4096, 𝑑𝑓 =

11008, 𝐿 = 512, 𝑘 = 8, 𝑟 = 2), EARN reduces the KV Cache size to
75% of the original, and the speedup ratio can reach 4x.

4 Experiment
In this section, we conduct extensive experiments to answer the
following research questions:
• RQ1: How does our proposed EARN perform compared to com-
mon inference acceleration methods?

• RQ2: How is the efficiency scalability of EARN under different
batch sizes and sequence lengths?

• RQ3: How do different hyper-parameters affect the trade-off
between inference efficiency and recommendation effectiveness
of EARN?

• RQ4: How do different components contribute to EARN?

4.1 Experimental Settings
4.1.1 Models and Datasets. We conduct experiments on two
mainstream LLMRec methods: LC-Rec [43] and TIGER [31], with
two distinct LLM architectures: Llama-7B [35] using multi-head
attention and Qwen2.5-7B [34] using grouped-query attention. We
test EARN on three real-world recommendation datasets: 1) Beauty
contains user interactions with the beauty products. 2) Games cov-
ers user interactions with the video games. 3) MovieLens-1M col-
lects user interactions with movies. More details of the datasets and
experimental implementation details can be found in Appendix A.3.

4.1.2 Baselines. We compare our approach against commonly
used practices and existing SOTAmethods, serving as our baselines:
• Basic Methods
– Finetune: Standard full finetuning of the model.
– SkipLayers: Skipping redundant subsequent layers.

• Prompt Compression: Methods targeting the prefilling stage.
– POD [11]: Distilling task instructions in the prompt into few
virtual tokens.

– 500xCompressor [18]: Compressing the context (user historical
interactions in our scenario) within the prompt into one single
special token, by employing frozen original LLM and trainable
additional LoRA parameters.

• Cache Compression: Methods targeting the decoding stage.
– StreamingLLM [40]: Statically retaining initial tokens and fixed-
length recent tokens.

– SnapKV [15]: Dynamically caching clustered important tokens.
• Gist Methods: Methods using the register token idea.
– Gist [28]: Employing LLM itself to compress task instructions
in the prompt into few gist tokens.

– AnLLM [30]: Employing LLM itself to compress segmented
sentences into the anchor token at the end of the sentence.

4.1.3 EvaluationMetrics. Referring to previous work in the field
of recommendation systems and LLM inference acceleration[8], we
use the following metrics to evaluate our method:
• Time Efficiency
– Walltime Speedup 𝜔 : The actual test speedup relative to vanilla
auto-regressive decoding by comparing the wall clock time.

– Throughput 𝜏 : The number of new tokens that the model gen-
erates per second.

• Space Efficiency
– KV Cache Reduction 𝛾 : The empirically measured percentage
reduction of the KV Cache.

– KV Cache Memory 𝜎 : The average GPU memory usage (GB) of
the KV Cache when generating the last token.

• Recommendation Effectiveness
– Recall@K (R@K): A widely used measure of the model’s ability
to retrieve relevant items, which is defined as the proportion of
relevant items that are recommended out of the total number
of relevant items available.

– NDCG@K (N@K): Normalized Discounted Cumulative Gain
(NDCG) is a measure that takes into account both the order of
relevant items and the relevance score of each item.

4.2 Overall Performance (RQ1)
The overall results of baselines and EARN instantiated on LC-Rec
on three datasets and two LLM models are presented in Table 1.
The results instantiated on TIGER are similar, which are moved to
Appendix A.4. We draw a few observations as follows:
• Qwen-based implementations outperform Llama-based imple-
mentations in both inference efficiency and recommendation
effectiveness. This superiority arises from: 1) Qwen’s grouped-
head attention architecture achieves a smaller KV Cache and
lower inference latency while maintaining semantic capability;
2) Qwen’s expanded tokenizer vocabulary (151,851 vs. Llama’s
32,000) that shortens input prompts, reducing semantic frag-
mentation; 3) Qwen is trained on a more massive dataset with
approximately 18 trillion tokens, which provides it with a richer
knowledge base and better language understanding capabilities.

• Among all inference acceleration baselines, although cache com-
pression methods (StreamingLLM and SnapKV) achieve the high-
est cache reduction (over 90%), their end-to-end speedup is not
as significant as prompt compression methods. This is because
cache compression methods do not optimize the prefilling stage,

3487

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, and Tat-Seng Chua

Table 1: Overall performance comparison between the baselines and EARN instantiated on LC-Rec. The best results are
highlighted in bold and the second-best results are underlined.

Dataset Model Method Time Efficiency Space Efficiency Recommendation Effectiveness
𝝎 𝝉 𝜸 𝝈 R@10 R@20 N@10 N@20

Beauty

Llama

Finetune 1.00 505.2 0.0 85.45 0.0145 0.0225 0.0084 0.0108
SkipLayers 1.79 895.4 44.4 47.50 0.0013 0.0013 0.0013 0.0013
POD 1.15 585.0 14.7 72.87 0.0045 0.0074 0.0032 0.0041
500xCompressor 2.31 1168.6 74.8 21.55 0.0005 0.0006 0.0002 0.0003
StreamingLLM 1.22 611.2 96.4 3.09 0.0005 0.0005 0.0004 0.0004
SnapKV 1.20 600.7 94.5 4.73 0.0054 0.0061 0.0030 0.0032
Gist 1.18 597.6 17.5 70.50 0.0048 0.0077 0.0028 0.0036
AnLLM 1.24 625.1 92.2 6.70 0.0000 0.0000 0.0000 0.0000
EARN 3.79 1844.8 80.5 16.68 0.0167 0.0265 0.0095 0.0124

Qwen

Finetune 1.00 622.1 0.0 14.08 0.0145 0.0248 0.0087 0.0117
SkipLayers 1.73 1056.1 58.0 5.92 0.0000 0.0000 0.0000 0.0000
POD 1.09 679.3 8.4 12.90 0.0082 0.0127 0.0047 0.0061
500xCompressor 2.56 1587.1 91.1 1.26 0.0003 0.0003 0.0001 0.0001
StreamingLLM 1.05 652.6 92.0 1.12 0.0088 0.0147 0.0058 0.0075
SnapKV 1.02 634.5 69.5 4.29 0.0097 0.0165 0.0058 0.0077
Gist 1.15 715.4 20.0 11.30 0.0084 0.0161 0.0050 0.0074
AnLLM 1.06 659.3 80.5 2.70 0.0000 0.0000 0.0000 0.0000
EARN 2.71 1662.6 75.2 3.49 0.0155 0.0265 0.0091 0.0122

Games

Llama

Finetune 1.00 571.4 0.0 78.10 0.0167 0.0273 0.0106 0.0138
SkipLayers 1.85 1045.3 45.0 42.93 0.0002 0.0002 0.0003 0.0003
POD 1.09 623.3 15.9 65.69 0.0088 0.0147 0.0052 0.0070
500xCompressor 2.11 1205.3 72.5 21.45 0.0014 0.0021 0.0009 0.0011
StreamingLLM 1.23 702.5 96.0 3.13 0.0013 0.0013 0.0014 0.0014
SnapKV 1.22 688.5 93.5 5.04 0.0102 0.0110 0.0070 0.0072
Gist 1.12 639.9 18.0 64.00 0.0091 0.0146 0.0053 0.0070
AnLLM 1.25 715.5 91.6 6.60 0.0003 0.0003 0.0003 0.0003
EARN 3.53 1930.6 80.8 14.98 0.0180 0.0291 0.0107 0.0142

Qwen

Finetune 1.00 568.1 0.0 13.03 0.0193 0.0316 0.0127 0.0155
SkipLayers 1.52 858.4 57.3 5.57 0.0000 0.0000 0.0000 0.0000
POD 1.35 767.5 8.1 11.98 0.0129 0.0209 0.0075 0.0100
500xCompressor 2.60 1475.4 97.1 0.38 0.0013 0.0023 0.0008 0.0011
StreamingLLM 1.05 594.7 98.4 0.21 0.0129 0.0202 0.0075 0.0098
SnapKV 1.02 576.2 67.9 4.19 0.0138 0.0226 0.0083 0.0110
Gist 1.41 801.3 22.9 10.00 0.0121 0.0154 0.0077 0.0088
AnLLM 1.09 616.9 95.2 0.60 0.0003 0.0003 0.0003 0.0003
EARN 3.11 1711.3 75.1 3.24 0.0197 0.0312 0.0122 0.0157

MovieLens

Llama

Finetune 1.00 704.3 0.0 55.39 0.0247 0.0449 0.0197 0.0288
SkipLayers 2.52 1302.9 67.6 17.93 0.0022 0.0022 0.0043 0.0043
POD 1.17 827.4 18.0 45.40 0.0066 0.0118 0.0062 0.0087
500xCompressor 1.92 1352.8 61.1 21.54 0.0004 0.0005 0.0003 0.0003
StreamingLLM 1.20 836.2 95.2 2.66 0.0000 0.0000 0.0000 0.0000
SnapKV 1.19 829.2 91.9 4.50 0.0000 0.0000 0.0000 0.0000
Gist 1.01 711.3 22.3 43.10 0.0232 0.0421 0.0118 0.0250
AnLLM 1.20 846.9 89.5 5.80 0.0006 0.0008 0.0005 0.0006
EARN 3.21 2250.2 79.7 11.26 0.0259 0.0452 0.0247 0.0341

Qwen

Finetune 1.00 752.9 0.0 10.71 0.0289 0.0421 0.0247 0.0315
SkipLayers 1.87 1124.7 76.6 2.50 0.0000 0.0000 0.0000 0.0000
POD 1.41 1061.7 40.1 6.42 0.0139 0.0177 0.0115 0.0131
500xCompressor 2.09 1577.8 77.6 2.40 0.0006 0.0009 0.0006 0.0007
StreamingLLM 1.05 766.8 88.9 1.19 0.0258 0.0372 0.0197 0.0244
SnapKV 1.00 731.9 76.5 2.52 0.0248 0.0428 0.0192 0.0266
Gist 1.06 799.0 30.0 7.50 0.0287 0.0441 0.0244 0.0305
AnLLM 1.03 772.4 75.9 2.60 0.0022 0.0022 0.0043 0.0043
EARN 2.84 2136.7 66.7 3.56 0.0298 0.0591 0.0252 0.0382

whereas prompt compression methods (POD and 500xCompres-
sor) reduce the input sequence length in the prefilling stage,
thereby improving both computational and memory efficiency.
This highlights the greater potential for acceleration in the pre-
filling stage for LLMRec. However, despite the notable inference
efficiency gains of the baselines, they suffer from catastrophic
recommendation effectiveness degradation. This highlights that

user historical interactions in recommendation scenarios cannot
be simply compressed at a high ratio using NLP methods.

• Although gist methods (Gist and AnLLM) also employ the idea
of register tokens, they fail to achieve a significant speedup. This
is because they utilize all layers of the LLM to compress infor-
mation, resulting in substantial computational costs. In contrast,
EARN only uses the first 𝑘 layers, significantly reducing the

3488

EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Figure 4: Efficiency under different batch sizes.

Figure 5: Efficiency under different sequence lengths.

computational burden. In terms of space efficiency, Gist only
compresses the task instruction within the input sequence, thus
saving only about 20% of cache memory. Although AnLLM can
reduce cache memory by 90%, it comes at the cost of catastrophic
loss in recommendation effectiveness. AnLLM’s recommendation
effectiveness is nearly zero. This is due to its attempt to compress
the intricate user interaction history into a single token, which
is highly challenging and leads to severe information loss and
poor performance. Gist shows a decline in recommendation ef-
fectiveness. This is because Gist compresses the task instruction
in isolation within the language space, while the items in recom-
mendations are not within the LLM’s language space. Without
direct interaction between the task instruction and historical
items, the LLM struggles to understand the recommendation
task’s requirements to predict items outside its vocabulary. This
impedes the method’s applicability to recommendation tasks.

• EARN significantly achieves SOTA time efficiency (2.71-3.79x
speedup) with excellent space efficiency (66.7-80.8% cache reduc-
tion), and also demonstrates a notable improvement over Fine-
tune in terms of recommendation effectiveness. This suggests
that the register tokens used in EARN can effectively summarize
useful information, thereby ensuring that recommendation effec-
tiveness is maintained while inference efficiency is improved.

4.3 Efficiency Scalability (RQ2)
To investigate the efficiency scalability of EARN, we evaluate the in-
ference efficiency of EARN as compared to Finetune under varying
batch sizes and sequence lengths.

4.3.1 Efficiency under Different Batch Sizes. To verify the
acceleration effect of EARN under different batch sizes, we test the
inference efficiency of EARN and Finetune with batch size in {1,
4, 8, · · · , 24} on Llama and {1, 8, 16, · · · , 48} on Qwen. As shown
in Figure 4, EARN maintains significantly higher throughput than
Finetune across all batch sizes. The speedup of EARN over Finetune

Figure 6: Effect of register layer depth 𝒌.

increases as the batch size grows. Moreover, EARN can handle a
larger batch size, which is particularly useful for practical scenarios.
For example, on Llama, Finetune runs into out-of-memory (OOM)
errors when the batch size exceeds 8, while EARN can still support
larger batch sizes. The results clearly demonstrate that EARN signif-
icantly improves efficiency compared to Finetune across different
batch sizes. Its ability to maintain high throughput on large batch
sizes highlights its superior efficiency and practical inference ca-
pabilities. This makes EARN a more suitable choice for real-world
applications where efficient and scalable inference is crucial.

4.3.2 Efficiency under Different Sequence Lengths. In indus-
trial settings, user interaction histories can be extensive. Therefore,
it is essential to assess the efficiency of EARN on longer sequences.
To simulate this scenario, we pad our dataset to specific lengths (1K,
5K, · · ·, 20K) to test the acceleration effects. From Figure 5, we can
see EARN consistently uses significantly less KV Cache than Fine-
tune across all sequence lengths. Moreover, the larger the sequence
length, the more significant the acceleration effect, achieving a
speedup of up to 7x when the sequence length is 20K on Llama.
This is highly desirable in practice, especially for long-term sequen-
tial recommendation, where user historical interaction sequences
are stored for a long time, thus learning user preferences compre-
hensively. The results clearly demonstrate that EARN significantly
improves efficiency compared to Finetune across different sequence
lengths. Its ability to maintain a low KV Cache size and achieve
higher speedup, especially for longer sequences, highlights its su-
perior efficiency and practical inference capabilities. This makes
EARN a more suitable choice for real-world applications where
efficient and scalable inference is crucial, particularly when dealing
with long sequences.

4.4 Hyper-parameter Analysis (RQ3)
To investigate the trade-off between inference efficiency and recom-
mendation effectiveness caused by variations in hyper-parameters,
we train and evaluate EARN with different register layer depth 𝑘

and register token number 𝑛.

4.4.1 Effect of Register Layer Depth 𝒌 . Figure 6 reveals the
trade-off between inference efficiency and recommendation effec-
tiveness when varying the register layer depth 𝑘 : 1) Too shallow:
When the register layer depth is too shallow (e.g., < 4 on Llama,
and < 7 on Qwen), although the speedup is high, the recall suffers
a significant loss. 2) Optimal range: In the range of 𝑘 = 4− 7, EARN
strikes a balance between speedup and recall. The speedup remains
reasonably high, while Recall@20 improves notably. This suggests

3489

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, and Tat-Seng Chua

Figure 7: Effect of register token number 𝒏.

that the model can effectively capture the necessary information for
recommendations without a substantial loss in inference efficiency.
3) Too deep: When the register layer depth is too deep (e.g., 𝑘 ≥ 13),
the speedup decreases significantly, but Recall@20 does not show
a proportional improvement. For example, on Qwen, the speedup
drops sharply when 𝑘 = 13 or 𝑘 = 20, while Recall@20 does not in-
crease substantially. This indicates that increasing the register layer
depth beyond a certain point leads to diminishing returns in terms
of recommendation effectiveness while significantly compromising
inference efficiency.

4.4.2 Effect of Register Token Number 𝒏. Figure 7 reveals the
trade-off between inference efficiency and recommendation effec-
tiveness when varying the register token number 𝑛, from which we
can observe that: 1) For both the prefix register and the suffix regis-
ter, as the register token number 𝑛 varies from 1 to 3, the speedup
gradually decreases. This is primarily because, as the register token
number increases, the size of the KV Cache that needs to be com-
puted and cached also grows, leading to increased inference latency.
2) There is a decline in Recall@20 as the register token number 𝑛
increases for both the prefix register and the suffix register. This
phenomenon may be attributed to the interactions among multiple
tokens in the later layers of the model, which can lead to a pro-
gressive distortion of the summarized information. The impact of
this accuracy degradation is relatively minor for the prefix register
but more pronounced for the suffix register. This discrepancy is
likely due to the fact that user interaction history summarized by
the suffix register is more complex and challenging to condense
compared to task instructions summarized by the prefix register.

Although the above results show that a single register token is
optimal, as prompt length increases, the optimal number of register
tokens may need to be adjusted to maintain the performance. There-
fore, we conduct further experiments to investigate how EARN
performs under different prompt lengths and whether the optimal
number of register tokens should be adjusted as the prompt length
increases. We segmented the dataset into three groups based on
prompt length (50-100, 100-150, and 150-200 tokens) to evaluate our

Figure 8: Effect of register token number 𝒏 under different
prompt length.

EARN’s performance across different prompt lengths. As shown in
Figure 8, EARN consistently outperforms the Finetune baseline, and
a single register token remains optimal across all prompt lengths.
However, we observed an interesting trend for the suffix register to-
ken: the performance gap between 1 and 2 register tokens narrows
as prompt length increases. This suggests that the optimal number
of register tokens may rise for very long prompts. Nevertheless,
experimental results on three real-world datasets (Table 1) demon-
strate that employing a single suffix register token could achieve
excellent recommendation performance, which is applicable to the
majority of recommendation scenarios.

4.4.3 Hyper-parameter Recommendation. We experimentally
validated that EARN’s hyper-parameters can be selected through
simple heuristics rather than exhaustive tuning. And we validated
that setting the register layer and using a single register token at
one-fourth achieves significant acceleration without accuracy loss
on three real-world datasets. This configuration is broadly applica-
ble for most recommendation tasks. Detailed analysis is as follows:
1) Register layer depth 𝑘 : Firstly, the lower the register layer 𝑘 , the
greater the acceleration effect achieved. Secondly, our sensitivity
analysis indicates that there is essentially no loss in recommenda-
tion effectiveness when 𝑘 is set to at least one-fourth of the total
layers. 2) Register token number 𝑛: Across two distinct LLMmodels
(Llama and Qwen), we consistently found that one register token
is optimal. Additionally, to assess if the number needs adjustment
as prompt length increases, we conducted grouped experiments
by length, and found that a single register token remains optimal
under different prompt lengths. Thus, for most LLMRec scenarios,
we propose a default configuration:
(1) 𝒌: One-fourth of the total layers as the register layer depth.
(2) 𝒏: One prefix register token and one suffix register token.

This setting could achieve a favorable speedup and KV Cache
reduction while maintaining strong recommendation performance.
And it’s easily adjustable for various deployment scenarios.

4.5 Ablation Studies (RQ4)
To study the contribution of each component of the proposed EARN,
we conduct ablation studies on the register training strategy and
the register token.

4.5.1 Effect of Register Training. We first investigate the ne-
cessity of register training by comparing it with direct register
inference on fully finetuned models. As shown in Table 2, models
without RT suffer significant performance degradation across all
metrics. Specifically for Llama with 𝑘 = 7, removing RT leads to 72%

3490

EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 2: Ablation study of the register training (RT).
Model 𝒌 Method R@10 R@20 N@10 N@20

Llama

Finetune 0.0145 0.0225 0.0084 0.0108

7 EARN 0.0174 0.0273 0.0098 0.0127
w/o RT 0.0048 0.0060 0.0021 0.0025

15 EARN 0.0168 0.0286 0.0093 0.0127
w/o RT 0.0053 0.0083 0.0029 0.0038

Qwen

Finetune 0.0145 0.0248 0.0087 0.0117

7 EARN 0.0155 0.0265 0.0091 0.0122
w/o RT 0.0074 0.0093 0.0044 0.0050

13 EARN 0.0156 0.0263 0.0098 0.0129
w/o RT 0.0072 0.0095 0.0043 0.0050

Table 3: Ablation study of the prefix register (PR) and the
suffix register (SR).

Model 𝒌 Method R@10 R@20 N@10 N@20

Llama

7
EARN 0.0174 0.0273 0.0098 0.0127
w/o PR 0.0172 0.0252 0.0108 0.0132
w/o SR 0.0041 0.0075 0.0021 0.0031

15
EARN 0.0168 0.0286 0.0093 0.0127
w/o PR 0.0166 0.0260 0.0103 0.0131
w/o SR 0.0074 0.0119 0.0035 0.0047

Qwen

7
EARN 0.0155 0.0265 0.0091 0.0122
w/o PR 0.0153 0.0217 0.0097 0.0116
w/o SR 0.0044 0.0071 0.0023 0.0031

13
EARN 0.0156 0.0263 0.0098 0.0129
w/o PR 0.0153 0.0230 0.0102 0.0124
w/o SR 0.0065 0.0106 0.0036 0.0049

relative drop in R@10 (from 0.0174 to 0.0048) and 80% reduction in
N@20 (from 0.0127 to 0.0025). This demonstrates that directly apply-
ing register inference without dedicated training fails to effectively
capture task-specific knowledge. With RT, both models achieve
consistent improvements over Finetune. Llama with 𝑘 = 7 gains
17% higher R@10 (0.0174 vs. 0.0145) and 15% better N@20 (0.0127
vs. 0.0108). This indicates that register training enables the model
to summarize key information from user historical interactions into
the register token.

4.5.2 Effect of Prefix Register and Suffix Register. We further
dissect the contribution of the prefix register and the suffix reg-
ister through component-wise ablation. Table 3 reveals three key
observations: 1) Suffix register dominates performance: Removing
the suffix register (w/o SR) causes significant performance collapse
for both Llama and Qwen. This confirms our design intuition that
summarizing historical interactions in the suffix register is crucial
for recommendation tasks. 2) Prefix register enhances task aware-
ness: Though not as severe as removing the suffix register (w/o SR),
removing the prefix register (w/o PR) still leads to a certain degree
of performance degradation. This suggests the prefix register effec-
tively primes the model for recommendation task identification. 3)
Layer-depth interaction: The impact of removing the suffix regis-
ter is more pronounced in the lower layers (e.g., 𝑘 = 7 exhibits a
greater performance drop than 𝑘 = 15 on Llama), indicating that the
suffix register plays a more significant summarization role in the
lower layers. The lower layers rely more heavily on the compressed
historical interaction information encoded in the suffix register.

5 Related Work
• Inference Acceleration of LLMRec. While LLM-based gen-
erative recommendations have shown remarkable performance
[10, 16, 20–22, 36, 38], their practical application is hindered by
high inference latency [12, 37, 44]. To tackle this issue, various re-
search has been proposed. Several techniques leverage knowledge
distillation to transfer comprehensible knowledge [4] or abstract
knowledge [33] from a teacher LLM to a smaller student language
model. Additionally, some methods apply speculative decoding
to achieve lossless decoding acceleration [23, 39]. Besides, some
approaches attempt to design efficient attention mechanisms to re-
duce computational complexity, such as sparse attention [6], linear
attention [24], and slimming architecture [19].
• KV Cache Reduction. It’s common practice to utilize KV
Cache to reduce redundant computations during LLM inference.
However, the use of KVCache introduces new challenges. KVCache
will increase linearly with the length of the sequence, and the mem-
ory requiredwill become larger and larger. To address this challenge,
diverse methods have been proposed to reduce KV Cache, including
two primary groups of work, i.e., prompt compression and cache
compression. Prompt compression reduces the initial KV Cache size
during prefilling by shortening the input token sequence. Hard com-
pression methods like SelectiveContext [14] and LLMLingua [9]
filter redundant tokens while preserving natural language syntax,
albeit at the cost of fluency. Soft compression techniques, such as
AutoCompressor [3] and 500xCompressor [18], encode prompts
into dense latent tokens, achieving higher compression ratios but
sacrificing human interpretability. Cache compression reduces KV
cache during decoding. Existing work employs eviction or merg-
ing strategies. Evict-based methods like StreamingLLM [40] and
SnapKV [15] selectively evict less important KV Cache through spe-
cific rules. Merge-based approaches (e.g., CAM [42] and DMC [29])
adaptively merge to-be-evicted caches into the remaining ones.

6 Conclusion
In this work, we address the critical challenge of inference effi-
ciency in LLM-based recommendation systems (LLMRec), where
the massive computational overhead and memory pressure of KV
Cache severely hinders practical deployment. Through systematic
analysis of LLMRec’s attention patterns, we identify two pivotal
characteristics: 1) layer-wise attention sparsity inversion, where in
early layers retain dense informative patterns while later layers ex-
hibit high redundancy, and 2) the dual attention sinks phenomenon,
where attention scores concentrate on both head and tail tokens
of input sequences. These insights motivate our proposed EARN
method, which introduces prefix and suffix register tokens to com-
press task instructions and user interaction histories, implementing
layer-wise computation pruning. EARN achieves an 80% reduc-
tion of KV Cache while maintaining essential information integrity.
Extensive experiments conducted on three benchmark datasets
and two distinct LLM architectures reveal that our EARN attains
3.79x inference acceleration with superior accuracy compared to
conventional finetuning approaches. This breakthrough effectively
reconciles the longstanding trade-off between inference efficiency
and recommendation quality in LLMRec, presenting tangible de-
ployment benefits for industrial-scale recommendation services.

3491

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, and Tat-Seng Chua

References
[1] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré.

2021. Scatterbrain: Unifying sparse and low-rank attention. Advances in Neural
Information Processing Systems 34 (2021), 17413–17426.

[2] Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin
Jiang, Zhenguo Li, Weiyang Liu, and Chao Huang. 2024. SepLLM: Accelerate
large language models by compressing one segment into one separator. arXiv
preprint arXiv:2412.12094 (2024).

[3] Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. 2023. Adapt-
ing language models to compress contexts. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. 3829–3846.

[4] Yu Cui, Feng Liu, PengboWang, BohaoWang, Heng Tang, Yi Wan, JunWang, and
Jiawei Chen. 2024. Distillation matters: empowering sequential recommenders
to match the performance of large language models. In Proceedings of the 18th
ACM Conference on Recommender Systems. 507–517.

[5] Yichuan Deng, Zhao Song, Jing Xiong, and Chiwun Yang. 2024. How Sparse
Attention Approximates Exact Attention? Your Attention is Naturally 𝑛𝐶 -Sparse.
arXiv preprint arXiv:2404.02690 (2024).

[6] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong
Wen. 2021. Lighter and better: low-rank decomposed self-attention networks for
next-item recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1733–1737.

[7] Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao
Du, Ye Wang, and Min Lin. 2025. When attention sink emerges in language
models: An empirical view. In The 13th International Conference on Learning
Representations.

[8] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring massive multitask language under-
standing. In The 9th International Conference on Learning Representations.

[9] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
LLMLingua: Compressing prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. 13358–13376.

[10] Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and
Chanyoung Park. 2024. Large language models meet collaborative filtering: An
efficient all-round LLM-based recommender system. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 1395–1406.

[11] Lei Li, Yongfeng Zhang, and Li Chen. 2023. Prompt distillation for efficient LLM-
based recommendation. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. 1348–1357.

[12] Lei Li, Yongfeng Zhang, Dugang Liu, and Li Chen. 2024. Large languagemodels for
generative recommendation: A survey and visionary discussions. In Proceedings
of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024). 10146–10159.

[13] Pengxiang Li, Lu Yin, and Shiwei Liu. 2025. Mix-LN: Unleashing the power
of deeper layers by combining Pre-LN and Post-LN, In The 13th International
Conference on Learning Representations. arXiv preprint arXiv:2412.13795.

[14] Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. 2023. Compressing
context to enhance inference efficiency of large language models. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing.
6342–6353.

[15] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli,
Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. 2024. SnapKV: LLM
knows what you are looking for before generation. Advances in Neural Informa-
tion Processing Systems 37 (2024), 22947–22970.

[16] Yongqi Li, Xinyu Lin, Wenjie Wang, Fuli Feng, Liang Pang, Wenjie Li, Liqiang Nie,
Xiangnan He, and Tat-Seng Chua. 2024. A survey of generative search and recom-
mendation in the era of large language models. arXiv preprint arXiv:2404.16924
(2024).

[17] Zongqian Li, Yinhong Liu, Yixuan Su, andNigel Collier. 2024. Prompt compression
for large language models: A survey. In Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers). 7182–7195.

[18] Zongqian Li, Yixuan Su, and Nigel Collier. 2024. 500xCompressor: Generalized
prompt compression for large language models. arXiv preprint arXiv:2408.03094
(2024).

[19] Jianghao Lin, Xinyi Dai, Rong Shan, Bo Chen, Ruiming Tang, Yong Yu, and
Weinan Zhang. 2025. Large language models make sample-efficient recommender
systems. Frontiers of Computer Science 19, 4 (2025), 194328.

[20] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu,
Chuhan Wu, Xiangyang Li, Chenxu Zhu, et al. 2025. How can recommender
systems benefit from large language models: A survey. ACM Transactions on
Information Systems 43, 2 (2025), 1–47.

[21] Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng Chua.
2024. Bridging items and language: A transition paradigm for large language
model-based recommendation. In Proceedings of the 30th ACM SIGKDDConference
on Knowledge Discovery and Data Mining. 1816–1826.

[22] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and
Tat-Seng Chua. 2024. Data-efficient fine-tuning for LLM-based recommendation.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 365–374.

[23] Xinyu Lin, Chaoqun Yang, Wenjie Wang, Yongqi Li, Cunxiao Du, Fuli Feng,
See-Kiong Ng, and Tat-Seng Chua. 2025. Efficient inference for large language
model-based generative recommendation. In The 13th International Conference
on Learning Representations.

[24] Langming Liu, Liu Cai, Chi Zhang, Xiangyu Zhao, Jingtong Gao, Wanyu Wang,
Yifu Lv, Wenqi Fan, Yiqi Wang, Ming He, et al. 2023. Linrec: Linear attention
mechanism for long-term sequential recommender systems. In Proceedings of
the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 289–299.

[25] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and
Jie Tang. 2022. P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers). 61–68.

[26] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2024. GPT understands, too. AI Open 5 (2024), 208–215.

[27] Shi Luohe, Hongyi Zhang, Yao Yao, Zuchao Li, et al. 2024. Keep the cost down:
A review on methods to optimize LLM’s KV-Cache consumption. In The 1st
Conference on Language Modeling (COLM).

[28] Jesse Mu, Xiang Li, and Noah Goodman. 2023. Learning to compress prompts
with gist tokens. Advances in Neural Information Processing Systems 36 (2023),
19327–19352.

[29] Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and
Edoardo M Ponti. 2024. Dynamic memory compression: retrofitting LLMs for
accelerated inference. In The 41st International Conference on Machine Learning.
37396–37412.

[30] Jianhui Pang, Fanghua Ye, Derek Wong, Xin He, Wanshun Chen, and Longyue
Wang. 2024. Anchor-based large language models. In Findings of the Association
for Computational Linguistics. 4958–4976.

[31] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan,
Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al.
2023. Recommender systems with generative retrieval. Advances in Neural
Information Processing Systems 36 (2023), 10299–10315.

[32] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. 2024.
Discovering the gems in early layers: Accelerating long-context LLMs with 1000x
input token reduction. arXiv preprint arXiv:2409.17422 (2024).

[33] Wenqi Sun, Ruobing Xie, Junjie Zhang, Wayne Xin Zhao, Leyu Lin, and Ji-Rong
Wen. 2024. Distillation is all you need for practically using different pre-trained
recommendation models. arXiv preprint arXiv:2401.00797 (2024).

[34] Qwen Team. 2024. Qwen2.5: A party of foundation models. https://qwenlm.
github.io/blog/qwen2.5/

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[36] Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, and Tat-Seng Chua. 2023.
Generative recommendation: Towards next-generation recommender paradigm.
arXiv preprint arXiv:2304.03516 (2023).

[37] Haotian Wu, Yingpeng Du, Zhu Sun, Tianjun Wei, Jie Zhang, and Ong Yew Soon.
2024. A survey on efficient solutions of large language models for recommenda-
tion. Authorea Preprints (2024).

[38] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2024. A survey on large
language models for recommendation. World Wide Web 27, 5 (2024), 60.

[39] Yunjia Xi, Hangyu Wang, Bo Chen, Jianghao Lin, Menghui Zhu, Weiwen Liu,
Ruiming Tang,Weinan Zhang, and Yong Yu. 2025. Efficiency unleashed: Inference
acceleration for LLM-based recommender systems with speculative decoding.
arXiv preprint arXiv:2408.05676 (2025).

[40] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2024.
Efficient streaming languagemodels with attention sinks. In The 12th International
Conference on Learning Representations.

[41] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao,
Zhaojie Gong, Fangda Gu, Jiayuan He, et al. 2024. Actions speak louder than
words: trillion-parameter sequential transducers for generative recommendations.
In The 41st International Conference on Machine Learning. 58484–58509.

[42] Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei
Liu, and Rongrong Ji. 2024. CaM: Cache merging for memory-efficient LLMs
inference. In The 41st International Conference on Machine Learning. 58840–58850.

[43] Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming
Chen, and Ji-Rong Wen. 2024. Adapting large language models by integrating
collaborative semantics for recommendation. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). 1435–1448.

[44] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming
Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, et al. 2024. A survey on efficient
inference for large language models. arXiv preprint arXiv:2404.14294 (2024).

3492

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD ’25, August 3–7, 2025, Toronto, ON, Canada

A Appendix
A.1 Detailed Analysis of Attention Score

Distributions
In this section, we provide a systematic analysis of attention score
distributions in LLMRec through quantitative measurements across
two critical dimensions: layer order and token position. To ensure
comprehensive insights, we conduct experiments across 13 NLP
tasks and three real-world recommendation datasets, two main-
stream LLMRec methods, and two distinct LLM architectures. Ta-
ble 4 presents the overall results. More detailed quantitative results
and visual figures can be found in our GitHub repository2. Our
findings reveal fundamental differences in attention patterns be-
tween NLP tasks and LLMRec tasks, offering critical guidance for
designing efficient compression strategies.

Quantitative Measurements of Attention Score Distribu-
tions. Given a sequence’s attention scores [𝑝1, 𝑝2, · · · , 𝑝𝑛], we test
its sparsity by threshold-based sparsity ratio adapted from prior
studies [1, 5]:

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

I(𝑝𝑖 > 𝜖) , (14)

where 𝜖 is the threshold. Here we set 𝜖 = 0.05, according to the
distribution characteristics of attention scores.

We test its sink by position-based total attention scores:

𝑆𝑖𝑛𝑘ℎ𝑒𝑎𝑑 =

𝑇ℎ∑︁
𝑖=1

𝑝𝑖 , 𝑆𝑖𝑛𝑘𝑡𝑎𝑖𝑙 =

𝑛∑︁
𝑖=𝑇𝑡

𝑝𝑖 , (15)

where𝑇ℎ and𝑇𝑡 is the position of the head and tail respectively. Here
we set𝑇ℎ = 3,𝑇𝑡 = 𝑛−3, according to the distribution characteristics
of attention scores.

Attention Differences across Layer Orders. As measured in
Table 4, we identify a layer-wise attention sparsity inversion
between NLP tasks and LLMRec tasks. In NLP tasks, the atten-
tion sparsity is high in early layers, but decreases in later layers
(𝑆𝑝𝑒𝑎𝑟𝑙𝑦 > 𝑆𝑝𝑙𝑎𝑡𝑡𝑒𝑟). Conversely, LLMRec tasks display an inverted
pattern: the attention sparsity is relatively low in early layers, but
increases in later layers (𝑆𝑝𝑒𝑎𝑟𝑙𝑦 < 𝑆𝑝𝑙𝑎𝑡𝑡𝑒𝑟). This indicates that the
less sparse early layers in LLMRec retain more user preference in-
formation, while high sparsity in later layers suggests redundancy.

Attention Differences across Token Positions. Table 4 re-
veals a dual attention sinks phenomenon that distinguishes
LLMRec from NLP tasks. There is significant 𝑆𝑖𝑛𝑘ℎ𝑒𝑎𝑑 for both
tasks, while LLMRec exhibits a larger 𝑆𝑖𝑛𝑘𝑡𝑎𝑖𝑙 (𝑆𝑖𝑛𝑘𝑡𝑎𝑖𝑙 (LLMRec) >
𝑆𝑖𝑛𝑘𝑡𝑎𝑖𝑙 (NLP)). This indicates that both head and tail tokens in
LLMRec are crucial for recommendation performance.

Implications for Compression Strategy. These findings indi-
cate that in LLMRec, the early layers contain richer information,
while the middle tokens in the later layers are redundant. Our ap-
proach takes into account the unique attention score distributions
in LLMRec and formulates a reasonable compression scheme from
a global perspective. It focuses on preserving information from
critical token positions and early layers while pruning redundant
parts in later layers. This ensures that it can improve efficiency
while maintaining accuracy.

2https://github.com/transcend-0/EARN/blob/main/attentions.md

Table 4: Measurements of attention sink and sparsity (av-
eraged across 13 NLP tasks, 3 real-world recommendation
datasets, 2 LLMRec backbones, and 2 LLM models). Here,
𝑺𝒑𝒆𝒂𝒓𝒍𝒚 denotes 𝑺𝒑𝒂𝒓𝒔 𝒊𝒕𝒚𝒆𝒂𝒓𝒍𝒚 𝒍𝒂𝒚𝒆𝒓𝒔 , and 𝑺𝒑𝒍𝒂𝒕𝒕𝒆𝒓 denotes
𝑺𝒑𝒂𝒓𝒔 𝒊𝒕𝒚𝒍𝒂𝒕𝒕𝒆𝒓 𝒍𝒂𝒚𝒆𝒓𝒔 .

Model Task 𝑺𝒑𝒆𝒂𝒓𝒍𝒚 𝑺𝒑𝒍𝒂𝒕𝒕𝒆𝒓 𝑺𝒊𝒏𝒌𝒉𝒆𝒂𝒅 𝑺𝒊𝒏𝒌𝒕𝒂𝒊𝒍

Llama NLP 0.064 0.026 0.73 0.07
LLMRec 0.025 0.048 0.56 0.09

Qwen NLP 0.074 0.046 0.30 0.15
LLMRec 0.047 0.059 0.30 0.24

A.2 Computational Complexity of LLM
For a decoder-only LLM with 𝑁 decoder layers, the computational
operations comprise three components: embedding, 𝑁 stacked de-
coder layers, and de-embedding. Since embedding and de-embedding
mainly involve lightweight lookup and projection steps, the com-
putational bottleneck lies in the decoder layers. Specifically, each
decoder layer consists of two core components: Multi-Head Atten-
tion (MHA) and Feed-Forward Network (FFN), whose FLOPs are
analyzed as follows:

Multi-Head Attention (MHA). Let 𝐿 denote the sequence
length, 𝑑ℎ the hidden dimension, 𝑑𝑎 the attention head dimen-
sion, and 𝑛ℎ the number of attention heads. We approximate the
FLOPs of matrix multiplication 𝑿𝐿×𝑑ℎ ×𝑾𝑑ℎ×𝑑𝑎 as 2𝐿𝑑ℎ𝑑𝑎 . For a
single attention head, the FLOPs include: 1) Projections for 𝑸 , 𝑲
and 𝑽 : 2𝐿𝑑ℎ𝑑𝑎 × 3 = 6𝐿𝑑ℎ𝑑𝑎 ; 2) Attention computation for 𝑸𝑲𝑇

and (·)𝑽 : 2𝐿2𝑑𝑎 + 2𝐿2𝑑𝑎 = 4𝐿2𝑑𝑎 . Aggregating across 𝑛ℎ heads,
plus 2𝐿𝑛ℎ𝑑𝑎𝑑ℎ FLOPs of the final output projection, the total MHA
FLOPs per decoder layer are:

𝐹𝐿𝑂𝑃𝑠𝑀𝐻𝐴 = 𝑛ℎ (8𝐿𝑑ℎ𝑑𝑎 + 4𝐿2𝑑𝑎) . (16)

Feed-Forward Network (FFN). The FFN module involves two
projectionswith intermediate dimension𝑑𝑓 : 1)Up-projection: 2𝐿𝑑ℎ𝑑𝑓 ;
2) Down-projection: 2𝐿𝑑𝑓 𝑑ℎ . This yields total FFN FLOPs of:

𝐹𝐿𝑂𝑃𝑠𝐹𝐹𝑁 = 4𝐿𝑑ℎ𝑑𝑓 . (17)

Total FLOPs. Combining both components, the FLOPs for a
single decoder layer are:

𝐹𝐿𝑂𝑃𝑠𝐿𝐿𝑀 𝑙𝑎𝑦𝑒𝑟 = 𝑛ℎ (8𝐿𝑑ℎ𝑑𝑎 + 4𝐿2𝑑𝑎) + 4𝐿𝑑ℎ𝑑𝑓
= 4𝐿[𝑛ℎ𝑑𝑎 (2𝑑ℎ + 𝐿) + 𝑑ℎ𝑑𝑓] .

(18)

A.3 Experimential Details
Datasets Details. For all three datasets, all historical interactions
are sorted according to the global timestamps, and then split into
training, validation, and testing sets with the ratio of 8:1:1. For the
item identifier, we follow LC-Rec [43] and TIGER [31] to set the
length 𝐿 = 4, i.e., the token sequence length of a generated item
would be 4.

Implementation details. All training and inference experi-
ments are conducted on a single NVIDIA H100 80GB GPU. For the
training setup, we employ full finetuning with AdamW optimizer
and an overall batch size of 128 by leveraging gradient accumula-
tion. The learning rate is set to 0.001, and is adjusted dynamically
by a cosine learning rate scheduler with a warmup ratio of 0.02.
For the inference setup, we set the beam size to 20 and use the
maximum batch size that the GPU could accommodate. For the

3493

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, and Tat-Seng Chua

Table 5: Overall performance comparison between the base-
lines and EARN instantiated on TIGER.

Method Time Efficiency Space Efficiency Recommendation Effectiveness
𝝎 𝝉 𝜸 𝝈 R@10 R@20 N@10 N@20

Beauty, Llama

Finetune 1.00 602.50 0.0 68.18 0.0108 0.0198 0.0071 0.0096
SkipLayers 1.78 1069.7 44.5 37.87 0.0010 0.0010 0.0011 0.0011
POD 1.17 701.7 14.8 58.11 0.0033 0.0065 0.0027 0.0039
500xCompressor 2.31 1389.1 74.8 17.16 0.0003 0.0003 0.0001 0.0001
StreamingLLM 1.21 730.0 96.4 2.44 0.0003 0.0005 0.0005 0.0003
SnapKV 1.19 718.1 94.5 3.76 0.0041 0.0053 0.0027 0.0031
EARN 3.44 1972.4 80.9 13.04 0.0115 0.0199 0.0075 0.0098

Beauty, Qwen

Finetune 1.00 714.3 0.0 12.72 0.0095 0.0162 0.0061 0.0081
SkipLayers 1.69 1208.1 57.9 5.35 0.0000 0.0000 0.0000 0.0000
POD 1.10 784.4 8.4 11.65 0.0056 0.0084 0.0032 0.0044
500xCompressor 2.55 1819.2 91.4 1.09 0.0003 0.0005 0.0002 0.0005
StreamingLLM 1.05 751.6 91.7 1.06 0.0057 0.0096 0.0040 0.0052
SnapKV 1.02 728.7 69.6 3.87 0.0063 0.0110 0.0043 0.0055
EARN 2.58 1805.9 75.5 3.11 0.0104 0.0164 0.0065 0.0089

Games, Llama

Finetune 1.00 695.8 0.0 61.40 0.0126 0.0216 0.0080 0.0107
SkipLayers 1.83 1272.4 45.0 33.76 0.0001 0.0001 0.0003 0.0003
POD 1.08 757.8 15.8 51.67 0.0054 0.0098 0.0032 0.0045
500xCompressor 2.11 1470.2 72.5 16.88 0.0010 0.0015 0.0007 0.0008
StreamingLLM 1.22 850.7 96.0 2.46 0.0010 0.0010 0.0010 0.0009
SnapKV 1.21 837.6 93.5 3.98 0.0064 0.0075 0.0045 0.0045
EARN 3.12 2062.7 81.2 11.56 0.0138 0.0212 0.0085 0.0108

Games, Qwen

Finetune 1.00 673.2 0.0 10.81 0.0131 0.0224 0.0085 0.0113
SkipLayers 1.51 1014.3 57.0 4.65 0.0000 0.0000 0.0000 0.0000
POD 1.36 912.1 8.5 9.88 0.0087 0.0150 0.0050 0.0073
500xCompressor 2.60 1752.0 96.7 0.35 0.0002 0.0004 0.0001 0.0001
StreamingLLM 1.06 708.8 98.4 0.17 0.0088 0.0145 0.0050 0.0072
SnapKV 1.02 686.4 67.6 3.50 0.0094 0.0161 0.0056 0.0081
EARN 2.86 1841.3 72.1 3.02 0.0137 0.0231 0.0086 0.0119

MovieLens, Llama

Finetune 1.00 852.50 0.0 39.79 0.0245 0.0446 0.0244 0.0323
SkipLayers 1.85 1577.0 67.6 12.89 0.0022 0.0024 0.0059 0.0051
POD 1.18 1003.9 18.1 32.57 0.0068 0.0122 0.0088 0.0103
500xCompressor 1.93 1640.0 61.1 15.48 0.0004 0.0006 0.0004 0.0003
StreamingLLM 1.18 1007.9 95.2 1.89 0.0000 0.0000 0.0000 0.0000
SnapKV 1.18 1002.50 91.8 3.28 0.0000 0.0000 0.0000 0.0000
EARN 2.85 2437.4 77.7 8.87 0.0269 0.0544 0.0221 0.0340

MovieLens, Qwen

Finetune 1.00 897.4 0.0 7.75 0.0238 0.0455 0.0224 0.0312
SkipLayers 1.49 1340.5 76.9 1.79 0.0002 0.0002 0.0002 0.0002
POD 1.41 1260.9 39.8 4.66 0.0114 0.0192 0.0106 0.0131
500xCompressor 2.10 1882.1 77.9 1.71 0.0004 0.0009 0.0005 0.0007
StreamingLLM 1.01 912.2 88.3 0.91 0.0213 0.0402 0.0180 0.0241
SnapKV 0.97 872.4 76.5 1.82 0.0204 0.0464 0.0174 0.0263
EARN 2.56 2292.8 45.5 4.23 0.0274 0.0474 0.0273 0.0355

Table 6: Overall comparison between baselines and EARN
instantiated on HSTU. Here, the unit of 𝝈 is MB.

Method Time Efficiency Space Efficiency Recommendation Effectiveness
𝝎 𝝉 𝜸 𝝈 R@10 R@20 N@10 N@20

Beauty

Finetune 1.00 2735.5 0.0 439.5 0.0446 0.0693 0.0269 0.0328
SkipLayers 1.72 4685.6 27.8 317.5 0.0248 0.0322 0.0116 0.0136
EARN 2.01 5414.9 49.5 222.0 0.0520 0.0594 0.0311 0.0329

Games

Finetune 1.00 3425.2 0.0 532.9 0.0557 0.0846 0.0362 0.0435
SkipLayers 1.69 5797.2 27.9 384.4 0.0371 0.0520 0.0200 0.0237
EARN 1.97 6770.9 50.3 264.9 0.0586 0.0735 0.0384 0.0421

MovieLens

Finetune 1.00 3187.9 0.0 546.9 0.0756 0.1073 0.0405 0.0485
SkipLayers 1.75 5602.4 34.6 357.7 0.0780 0.1207 0.0429 0.0536
EARN 2.06 6555.8 50.5 270.6 0.0793 0.1268 0.0429 0.0551

Table 7: Overall performance comparison between Finetune
and EARN with different register layer 𝑘 on Llama (total 32
layers) on MMLU.

RegisterLayer 𝒌 𝝎 𝝉 𝜸 𝝈 Accuracy

Finetune 1.0 76.0 0.0 266.0 0.51
4 6.9 523.6 83.3 44.5 0.27
7 4.3 331.3 73.3 71.0 0.28
11 2.9 219.0 61.3 103.0 0.28
15 2.2 163.4 49.3 135.0 0.46
19 1.7 130.3 38.2 164.5 0.50
23 1.4 104.3 26.1 196.5 0.50
27 1.2 91.6 14.2 228.3 0.50

hyper-parameters of EARN in Table 1, EARN on Llama uses 𝑘 = 4
and 𝑛 = 1, and EARN on Qwen uses 𝑘 = 7 and 𝑛 = 1.

A.4 Additional Results on TIGER
Table 5 shows the overall performance comparison between the
baselines and EARN instantiated on TIGER. Our EARN achieves the
best performance in terms of time efficiency and recommendation
effectiveness, while also demonstrating excellent space efficiency.
These results further validate the effectiveness of EARN.

A.5 Additional Results on HSTU
We also conduct experiments on HSTU [41], the first industry-
deployed generative recommendation system. As shown in Table 6,
our EARN is also effective for HSTU, demonstrating excellent time
and space efficiency (2x speedup and 50% memory savings), with
minimal impact on recommendation effectiveness. It is important
to note that HSTU differs from other popular LLM-based genera-
tive recommendation methods (e.g., LC-Rec). Specifically, in HSTU
model, there are no textual inputs and no concept of prompts as
seen in NLP tasks. And HSTU directly generates the predicted item
embeddings, akin to generating only one token, which means it
only has the prefilling stage and no decoding stage. These render
that the baselines of prompt compression, cache compression, and
gist methods in NLP are not applicable. Therefore, we primarily
compared Finetune, SkipLayer, and EARN.

A.6 Additional Results on NLP Tasks
To validate the generalizability of EARN beyond recommendation
tasks, we conducted experiments on MMLU dataset [8]—a general
NLP dataset spanning 57 tasks (e.g., math, science, and humanities).

Results in Table 7 demonstrate EARN’s effectiveness: 1) Efficiency-
accuracy trade-off: As the register layer 𝑘 decreases, EARN achieves
higher speedup and cache reduction at the cost of reduced accu-
racy. However, when 𝑘 ≥ 15, the accuracy loss remains within 10%,
indicating that EARN can still deliver satisfactory performance for
general NLP tasks. 2) Comparison with LLMRec tasks: Unlike LLM-
Rec tasks, where EARN incurs no accuracy loss at 𝑘 ≥ 4 and even
boosts accuracy by pruning noisy information (refer to Figure 6),
NLP tasks require a higher 𝑘 to curb accuracy degradation.

In summary, while optimal 𝑘 varies across tasks, it consistently
enables efficient inferencewith controlled accuracy trade-offs, show-
casing its broader applicability beyond recommendation tasks.

3494

	Abstract
	1 Introduction
	2 Preliminary
	2.1 LLM-based Generative Recommendation
	2.2 Inference of LLMRec

	3 Method
	3.1 Register Tokens
	3.2 Overall Pipeline
	3.3 Efficiency Analysis

	4 Experiment
	4.1 Experimental Settings
	4.2 Overall Performance (RQ1)
	4.3 Efficiency Scalability (RQ2)
	4.4 Hyper-parameter Analysis (RQ3)
	4.5 Ablation Studies (RQ4)

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Detailed Analysis of Attention Score Distributions
	A.2 Computational Complexity of LLM
	A.3 Experimential Details
	A.4 Additional Results on TIGER
	A.5 Additional Results on HSTU
	A.6 Additional Results on NLP Tasks

